

A multicompartmental population PK model elucidating the complex disposition of trastuzumab emtansine (T-DM1): an antibody-drug conjugate for the treatment of **HER2-positive cancer**

UPPSALA UNIVERSITET

B. Bender (1,2), D. Leipold (2), L. Liu (2), K. Xu (2), B.-Q. Shen (2), L.E. Friberg (1), J. Tibbitts (2) (1) Dept of Pharmaceutical Biosciences, Uppsala University, Sweden, (2) Genentech Inc, San Francisco, CA

Background

Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate developed for treatment of human epidermal growth factor receptor 2 (HER2)-positive cancers [1]

T-DM1 drug product is a heterogeneous mix of drug:antibody ratio (DAR) moieties in which trastuzumab (Herceptin[®]) is conjugated with from 1–8 molecules of the potent microtubule inhibitor DM1 (DAR₁–DAR₈)

Results (cont'd)

Figure 3: Representative Model Fit

Table 1: Parameter Estimates

				Rat		Cynomolgus Monkey	
	Parameter	Description	Unit	Value <i>RSE%</i>	IIV % RSE%	Value RSE%	IIV % RSE%
	CL _{trastuzumab}	Total trastuzumab Clearance	mL/day	2.32 4.4	24.8 15	16.0 6.5	24.9 15
	CL _{invivo}	<i>in vivo</i> antibody clearance	mL/day	1.02 ª	_	3.61 ª	_
	K _{plasma}	Plasma degradation	day⁻¹	0.113 <i>14</i>	-	0.105 <i>12</i>	_
	V ₁	Central volume	mL	11.5 <i>4.1</i>	20.6 14	118 <i>4.7</i>	19.8 <i>12</i>
	CLd ₂	Distribuitional Clearance2	mL/day	22.1 21	_	99.0 <i>8.0</i>	_
	V ₂	Peripheral volume 2	mL	6.41 25	58.5 <i>30</i>	69.2 23	58.7 16
	CLd ₃	Distribuitional Clearance 3	mL/day	6.60 23	-	18.8 <i>24</i>	_
	V ₃	Peripheral volume 3	mL	14.7 <i>11</i>	19.2 23	117 <i>50</i>	116 <i>14</i>
	$\begin{array}{ccc} K_{7 \rightarrow 6} & K_{6 \rightarrow 5} \\ K_{5 \rightarrow 4} & K_{4 \rightarrow 3} \\ K_{3 \rightarrow 2} \end{array}$	DAR ₇ –DAR₃ deconjugation rate ^b	day⁻¹	0.455 10	23.9 39	0.341 9.7	_
	K _{2→1}	DAR ₂ deconjugation rate	day⁻¹	0.326 <i>7.0</i>	13.5 <i>5</i> 9	0.265 9.3	17.5 <i>15</i>
	K _{1→0}	DAR₁ deconjugation rate	day⁻¹	0.081 <i>14</i>	44.0 26	0.0759 <i>38</i>	40.1 <i>14</i>
	Tot trast. $t_{1/2,\gamma}$	Total trastuzumab terminal t _{1/2}	day	10.5	-	15.3	_
	T-DM1 t _{1/2,γ}	T-DM1 terminal t _{1/2}	day	8.33	_	11.6	_
	Res. Err.	Residualerror	-	0.125 6.7	-	0.139 <i>3.1</i>	-

not been fully elucidated

Objectives

A population PK model was developed from preclinical data in order to:

- Conceptualize the PK system, linking concentrations of measurable DAR moieties
- Quantify PK parameters and rates of T-DM1 deconjugation (loss of DM1)
- Simulate concentrations of DAR moieties, free trastuzumab (DAR₀), total trastuzumab, T-DM1, and the average DAR (DAR_{AVG}) versus time to further elucidate its complex PK

Methods

Analytical Methods

- Relative DAR₀–DAR₈ concentrations were measured by affinity capture LC-MS [2]
- Total trastuzumab concentrations were measured by ELISA

T-DM1 Drug Products for *in vitro* **and** *in vivo* **PK studies**

 $DAR_0 DAR_1 DAR_2 DAR_3 DAR_4 DAR_5 DAR_6 DAR_7 DAR_8$ T-DM1_{DAR1.5}: 21% 35% 26% 13% 4% 1% not detected (ND) T-DM1_{DAR3.1}: 2% 13% 23% 26% 19% 10% 5% 2% ND *In vitro* Plasma Stability Study

- Rat, monkey, and human plasma incubations with 100 µg/mL T-DM1_{DAR3.1} at 37°C
- Total trastuzumab and DAR₀–DAR₇ measurements (mmts) from 0 to 4 days In vivo PK Studies (n=34 rats; n=18 cynomolgus monkeys) • Rat: T-DM1_{DAR1.5} 10 mg/kg (n=5); T-DM1_{DAR3.1} 0.3 (n=7), 3.0 (n=8), 10.0 (n=5), and 20.0 mg/kg (n=9); Total trastuzumab mmts from 0–42 days ; DAR₀–DAR₈ mmts from 0–21 days Monkey: T-DM1_{DAR3.1} 30.0 (n=4) [3] and 10.0 mg/kg every 3 weeks (q3w) (n=14); Total trastuzumab mmts from 0–105 days; DAR₀–DAR₇ mmts from 0–28 days

- Cynomolgus monkey; 30 mg/kg T-DM1_{DAR3.1}
- Lines = model predicted
- O = observations

iterindividual variability; RSE, relative standard error; ^a Derived by: CL_{in vivo}= CL_{trasturumab} - K_{plasma} • V₁ ^b Rates were determined to be equal from model building

Final Model Simulations

T-DM1 single and multiple dose simulations were done using the final model (Figure 1) and monkey parameter estimates (Table 1) to further elucidate T-DM1 PK

Population PK Modeling

- PK model (Figure 1) was fit to rat (plus *in vitro*) or monkey (plus *in vitro*) data
- NONMEM version 7 with FOCE interaction.
- # of DAR_0 -DAR₇ and total trastuzumab mmts = 673 (rat) and 762 (monkey)

Results

From Figure 4:

- T-DM1 clearance is composed of antibody clearance ($CL_{trastuzmab}$) and DM1 deconjugation ($K_{n \rightarrow n-1}$)
- Total trastuzmab terminal t_{1/2} (15.3 days) can be derived from 3-compartment model PK parameters; T-DM1 terminal $t_{1/2}$ is shorter (11.6 days) due to the additional $K_{1\rightarrow 0}$ elimination rate (rate limiting step)
- The DAR_{AVG} curve is multiphasic, and depends on the T-DM1 drug product, deconjugation rates, and PK • The drop in DAR_{AVG} in the first week, starting at DAR_{AVG} = 3.1, is due to the more rapid loss of DAR \geq 3 • After the first week, the DAR_{AVG} profile results primarily from the slower elimination of DAR₀–DAR₂

From Figure 5:

• Under a q3w dose regimen, the steady state maximum DAR_{AVG} goes down from 3.1 to 2.8, due to accumulation of DAR_1 and DAR_0

• T-DM1 C_{max.ss} is < total trastuzumab C_{max.ss} due to 1) the greater T-DM1 clearance from DM1 deconjugation and 2) DAR₀ accumulation

 Concentrations of total trastuzumab, T-DM1, DAR_0 – DAR_7 , and DAR_{AVG} can be evaluated as PK drivers for the PKPD modeling of efficacy and toxicity with T-DM1 treatment

Figures 2a,2b: Representative Visual Predictive Checks (50th %-ile; 95% CI) 2a: *in vitro* plasma stability; 100 µg/mL T-DM1_{DAR3.1}

2b: in vivo Cynomolgus monkey PK; 30 mg/kg T-DM1_{DAR3.1}

Conclusions

• T-DM1 disposition, and underlying DAR moieties, was well described by a multicompartmental PK model based on preclinical *in vivo* and *in vitro* data

• In both rats and monkeys, the higher conjugated DAR moieties (≥ 3) DM1/trastuzumab) deconjugated faster than lower conjugated DAR moieties

• This model can be used to simulate concentrations of DAR moieties, free trastuzumab, total trastuzumab, T-DM1, as well as DAR_{AVG} versus time; these analytes can be evaluated as PK drivers of efficacy and toxicity

• PK concepts elucidated here may aid the design and analyses of similar ADCs

References

[1] Lewis-Phillips GD, Li G, Dugger DL, et al. Cancer Res. 2008;22:9280-9290.

[2] Xu, K. et al. Anal Biochem 412, 56-66 (2011).

[3] Leipold D, Bender B, Xu K, Theil F-P, and Tibbitts J. Understanding the de-conjugation of Trastuzumab-MCC-DM1 through application of a multi-compartmental model of individual drug:antibody species in cynomolgus monkey. Presented at the 2009 American Association for Cancer Research (AACR) Meeting, Denver, Colorado. April 18th, 2009.